TTIC 31150/CMSC 31150 Mathematical Toolkit (Spring 2023)

Avrim Blum and Ali Vakilian

Lecture 4: Orthogonality and Adjoints

Recap

- Linear transformations, bases, connections of LTs to matrices, kernel (nullspace) and image, rank-nullity theorem.
- Eigenvectors and eigenvalues
- Eigenvectors of same eigenvalue form a subspace. Eigenvectors of different eigenvalues are linearly independent.
- Inner products, norm $\|v\|=\sqrt{\langle v, v\rangle}$
- Cauchy-Schwartz: $|\langle u, v\rangle| \leq\|u\|\|v\|$.
- Triangle inequality of norm.

1 Orthogonality and orthonormality

Definition 1.1 Two vectors u, v in an inner product space are said to be orthogonal if $\langle u, v\rangle=0$. A set of vectors $S \subseteq V$ is said to consist of mutually orthogonal vectors if $\langle u, v\rangle=0$ for all $u \neq v, u, v \in S$. A set of $S \subseteq V$ is said to be orthonormal if $\langle u, v\rangle=0$ for all $u \neq v, u, v \in S$ and $\|u\|=1$ for all $u \in S$.

Proposition 1.2 A set $S \subseteq V \backslash\left\{0_{V}\right\}$ consisting of mutually orthogonal vectors is linearly independent.

Proof:

- If u satisfies $\langle u, v\rangle=0$ for all $v \in S \backslash\{u\}$, then it also has inner product 0 with any linear combination of $S \backslash\{u\}$, so it can't be in the span unless already the 0 vector.
- Since this holds for all $u \in S$, this means S must be linearly independent.

Proposition 1.3 (Gram-Schmidt orthogonalization) Given a finite set $\left\{v_{1}, \ldots, v_{n}\right\}$ of linearly independent vectors, there exists a set of orthonormal vectors $\left\{w_{1}, \ldots, w_{n}\right\}$ such that

$$
\operatorname{Span}\left(\left\{w_{1}, \ldots, w_{n}\right\}\right)=\operatorname{Span}\left(\left\{v_{1}, \ldots, v_{n}\right\}\right)
$$

Proof: By induction. The case with one vector is trivial. Given the statement for k vectors and orthonormal $\left\{w_{1}, \ldots, w_{k}\right\}$ such that

$$
\operatorname{Span}\left(\left\{w_{1}, \ldots, w_{k}\right\}\right)=\operatorname{Span}\left(\left\{v_{1}, \ldots, v_{k}\right\}\right),
$$

define

$$
u_{k+1}=v_{k+1}-\sum_{i=1}^{k}\left\langle w_{i}, v_{k+1}\right\rangle \cdot w_{i} \quad \text { and } \quad w_{k+1}=\frac{u_{k+1}}{\left\|u_{k+1}\right\|} .
$$

- Unit-length is clear. Let's check orthogonality:

$$
\begin{aligned}
& \text { Using inductive assumption that } \\
& w_{1}, \ldots, w_{k} \text { are orthonormal }
\end{aligned}
$$

$$
>\left\langle u_{k+1}, w_{j}\right\rangle=\left\langle v_{k+1}, w_{j}\right\rangle-\sum_{i=1}^{k}\left\langle v_{k+1}, w_{i}\right\rangle\left\langle w_{i}, w_{j}\right\rangle=\left\langle v_{k+1}, w_{j}\right\rangle-\left\langle v_{k+1}, w_{j}\right\rangle=0 .
$$

Corollary 1.4 Every finite dimensional inner product space has an orthonormal basis.

Brief note on Hilbert spaces:

- Hilbert spaces also have a (countably infinite) orthonormal basis.
- Need to define basis a bit differently: span of a set of vectors is still the set of all finite linear combinations, but we only require that for any $v \in V$, we can get arbitrarily close to v using elements in the span.
- We will focus on finite-dimensional vector spaces.

Fourier Coefficients

Let V be a finite-dimensional inner-product space with orthonormal basis $\left\{w_{1}, \ldots, w_{n}\right\}$.

- So, for any $v \in V$, there exist c_{1}, \ldots, c_{n} such that $v=\sum_{i=1}^{n} c_{i} w_{i}$.
- These c_{i} are called Fourier Coefficients.
- Note that $c_{i}=\left\langle w_{i}, v\right\rangle$. Why?
\Rightarrow Let's compute $\left\langle w_{i}, v\right\rangle=\left\langle w_{i}, \sum c_{j} w_{j}\right\rangle=\sum_{j}\left\langle w_{i}, c_{j} w_{j}\right\rangle=\sum_{j} c_{j}\left\langle w_{i}, w_{j}\right\rangle=c_{i}$.
- So, $v=\sum_{i=1}^{n}\left\langle w_{i}, v\right\rangle w_{i}$.

Parseval's identity

Proposition 1.5 (Parseval's identity) Let V be a finite dimensional inner product space and let $\left\{w_{1}, \ldots, w_{n}\right\}$ be an orthonormal basis for V. Then, for any $u, v \in V$

$$
\langle u, v\rangle=\sum_{i=1}^{n}\left\langle u, w_{i}\right\rangle \cdot\left\langle w_{i}, v\right\rangle .
$$

Proof:

- We know $v=\sum_{i}\left\langle w_{i}, v\right\rangle w_{i}$. Plug into LHS and distribute.

If working over \mathbb{R}^{n}, and w_{i} are the standard basis, with $u=\left(u_{1}, \ldots, u_{n}\right)$ and $v=$ $\left(v_{1}, \ldots, v_{n}\right)$ then this says that $\langle u, v\rangle=\sum_{i} u_{i} v_{i}$.

Adjoint of a Linear Transform

Definition 2.1 Let V, W be inner product spaces over the same field \mathbb{F} and let $\varphi: V \rightarrow W$ be a linear transformation. A transformation $\varphi^{*}: W \rightarrow V$ is called an adjoint of φ if

$$
\langle w, \varphi(v)\rangle=\left\langle\varphi^{*}(w), v\right\rangle \quad \forall v \in V, w \in W
$$

Example 2.2 Let $V=\mathbb{R}^{n}$ and $W=\mathbb{R}^{m}$ with the usual inner product, and let $\varphi: V \rightarrow W$ be represented by the matrix A. Then φ^{*} is represented by the matrix A^{T}. In particular, $\langle w, A v\rangle=$ $\left.w^{T} A v=\left(A^{T} w\right)^{T} v=\left\langle A^{T} w, v\right\rangle=\left\langle\varphi^{*}(w), v\right)\right\rangle$. So, a symmetric matrix is "self-adjoint".

Adjoint of a Linear Transform

Definition 2.1 Let V, W be inner product spaces over the same field \mathbb{F} and let $\varphi: V \rightarrow W$ be a linear transformation. A transformation $\varphi^{*}: W \rightarrow V$ is called an adjoint of φ if

$$
\langle w, \varphi(v)\rangle=\left\langle\varphi^{*}(w), v\right\rangle \quad \forall v \in V, w \in W .
$$

Continuous functions from $[0,1]$ to $[-1,1]$

Example 2.4 Let $V=C([0,1],[-1,1])$ with the inner product $\left\langle f_{1}, f_{2}\right\rangle=\int_{0}^{1} f_{1}(x) f_{2}(x) d x$, and let $W=C([0,1 / 2],[-1,1])$ with the inner product $\left\langle g_{1}, g_{2}\right\rangle=\int_{0}^{1 / 2} g_{1}(x) g_{2}(x) d x$. Let $\varphi: V \rightarrow W$ be defined as $\varphi(f)(x)=f(2 x)$. Then, $\varphi^{*}: W \rightarrow V$ can be defined as

$$
\varphi^{*}(g)(y)=(1 / 2) \cdot g(y / 2) .
$$

Let's calculate: $\langle g, \varphi(f)\rangle=\int_{0}^{1 / 2} g(x) f(2 x) d x=\int_{0}^{1} \frac{1}{2} g\left(\frac{y}{2}\right) f(y) d y$, using $y=2 x, d y=2 d x$.

Characterization of linear transformations from V to \mathbb{F}

Proposition 2.5 (Riesz Representation Theorem) Let V be a finite-dimensional inner product space over \mathbb{F} and let $\alpha: V \rightarrow \mathbb{F}$ be a linear transformation. Then there exists a unique $z \in V$ such that $\alpha(v)=\langle z, v\rangle \forall v \in V$.

In other words, the only linear transformations from V to \mathbb{F} are those given by $\langle z$,$\rangle for$ some z.

Proof: Let $\left\{w_{1}, \ldots, w_{n}\right\}$ be an orthonormal basis for V. Given v, let c_{1}, \ldots, c_{n} be its Fourier coefficients, so $v=\sum_{i} c_{i} w_{i}$, and $c_{i}=\left\langle w_{i}, v\right\rangle$. Since α is a linear transformation, we must have $\alpha(v)=\sum_{i} c_{i} \alpha\left(w_{i}\right)=\sum_{i}\left\langle w_{i}, v\right\rangle \alpha\left(w_{i}\right)=\sum_{i}\left\langle\overline{\alpha\left(w_{i}\right)} w_{i}, v\right\rangle=\langle z, v\rangle$ for $z=\sum_{i} \overline{\alpha\left(w_{i}\right)} w_{i}$.

Scalar, so can move into $1^{\text {st }}$ slot by taking conjugate

Using this, can show that any linear transformation has an adjoint and it is unique.

Every linear transformation has a unique adjoint

Proposition 2.6 Let V, W be finite dimensional inner product spaces and let $\varphi: V \rightarrow W$ be a linear transformation. Then there exists a unique $\varphi^{*}: W \rightarrow V$, such that

$$
\langle w, \varphi(v)\rangle=\left\langle\varphi^{*}(w), v\right\rangle \quad \forall v \in V, w \in W .
$$

Proof:

- For each w, the mapping $\psi_{w}(v)=\langle w, \varphi(v)\rangle$ is a linear transformation from V to \mathbb{F}.
- So, exists unique $z_{w} \in V$ s.t. $\psi_{w}(v)=\left\langle z_{w}, v\right\rangle$.
- Now, consider $\beta: W \rightarrow V$ defined as $\beta(w)=z_{w}$. So, we have $\langle w, \varphi(v)\rangle=\langle\beta(w), v\rangle$.
- Verify β is linear. In particular, for all w_{1}, w_{2} have $\left\langle\beta\left(w_{1}+w_{2}\right), v\right\rangle=\left\langle w_{1}+w_{2}, \varphi(v)\right\rangle=$ $\left\langle\beta\left(w_{1}\right)+\beta\left(w_{2}\right), v\right\rangle$ for all v, which implies $\beta\left(w_{1}+w_{2}\right)=\beta\left(w_{1}\right)+\beta\left(w_{2}\right)$. Similar reasoning for $\beta(c w)=c \beta(w)$.

Self-adjoint Transformations

Definition 3.1 A linear transformation $\varphi: V \rightarrow V$ is called self-adjoint if $\varphi=\varphi^{*}$. Linear transformations from a vector space to itself are called linear operators.

Example 3.2 The transformation represented by matrix $A \in \mathbb{C}^{n \times n}$ is self-adjoint if $A=\overline{A^{T}}$. Such matrices are called Hermitian matrices.

So, over the reals, square symmetric matrices are self-adjoint.

Self-adjoint Transformations

Proposition 3.3 Let V be an inner product space and let $\varphi: V \rightarrow V$ be a self-adjoint linear operator. Then

- All eigenvalues of φ are real.
- If $\left\{w_{1}, \ldots, w_{n}\right\}$ are eigenvectors corresposnding to distinct eigenvalues then they are mutually orthogonal.

Proof (first part):

- Let v be an eigenvector and λ its associated eigenvalue.
- We know that $\langle\varphi(v), v\rangle=\langle v, \varphi(v)\rangle$, so $\langle\lambda v, v\rangle=\langle v, \lambda v\rangle$, so $\bar{\lambda}=\lambda$.

Self-adjoint Transformations

Proposition 3.3 Let V be an inner product space and let $\varphi: V \rightarrow V$ be a self-adjoint linear operator. Then

- All eigenvalues of φ are real.
- If $\left\{w_{1}, \ldots, w_{n}\right\}$ are eigenvectors corresposnding to distinct eigenvalues then they are mutually orthogonal.

Proof (second part):

- Say w_{1} has eigenvalue λ_{1} and w_{2} has eigenvalue λ_{2}, where $\lambda_{1} \neq \lambda_{2}$.
- We know $\left\langle\varphi\left(w_{1}\right), w_{2}\right\rangle=\left\langle w_{1}, \varphi\left(w_{2}\right)\right\rangle$, so $\left\langle\lambda_{1} w_{1}, w_{2}\right\rangle=\left\langle w_{1}, \lambda_{2} w_{2}\right\rangle$.
- This means $\lambda_{1}\left\langle w_{1}, w_{2}\right\rangle=\lambda_{2}\left\langle w_{1}, w_{2}\right\rangle$. So, must have $\left\langle w_{1}, w_{2}\right\rangle=0$.

Hwk2 out today. Due April 10.

